>'ﬁD—9140 417 RPPROXIHRTINF MULTIPLE ITO INTEGRALS HITH ’BRND
LIM PROCESSES. . (U) BROWN UNIV PROYIDENCE RI

FSPHETZ CENTER FOR DVNRHI"RL SYSTE. .

UNCLRSSIFIED H

=
BN
R

J KUSHNER ET AL. OCT 83 LCDS-83-24

F/G 1271




5 R
e S g et e

I e

EFEE
o

A A LA
TN PR AT NP PN XY YL IR
) s

U A A AN
A 'y

£ Paa’

RS L
PR (R



Lefschetz Center for Dynamical Systems

SETARUTION SIATEMENT B
Approved for public release|
Distribution Uplimited




AIR FORCE OFFICE OF SCIENTIFIC RESEARCR (AWSC!
NOTICE OF TRANSCITTAL TO DTIC

This techul~~2 vzuart has basn rovie-ad nrd o
appraved fav votida roleuse TAW AFR 130-12.
Distribution is unlimited.

MATTHEW J. KERPER

Chief, Teshnical InformetionDivision ~

s



TR L LAyt gy - A ARt o

L N

UNCLASSITIED

SECURITY CLASSIFICATION OF THIS PAGE
L -3

REPORT DOCUMENTATION PAGE

« ¥ LEN L. X b I

s ARPORT SECURITY CLASSIFICATION
JNCLASSIFIED

1. RESTRICTIVE MARKINGS

28 SECURITY CLASSIFICATION AUTHOAITY

3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release; distribution

2. DECLASSIFICATION/ODOWNGRADING SCHEDULE

unlimited.

4. PRAFORMING ORGANIZATION REPOAT NUMBER(S)
LCDS #83-24

Sa NAME OF PERFOAMING ORGANIZATION
Brown University

b. OFFICE SYMBOL
(11 epplicable)

6. MONITORING ORGANIZATION REPORT NUMBER(S)

AFOSR-TR- 84-0285

7s. NAME OF MONITORING ORGANIZATION
Air Force Office of Scientific Research

@c. ADDRESS (City, State end ZIP Code)
Lefschetz Center for Dynamical Systems
Division of Applied Mathematics
Providence RI 02912

7o. ADORESS (City. State end ZIP Code}
Directorate of Mathematical & Information

Sciences, Bolling AFB DC 20332

8s. NAME OF FUNDING/SPONSORING : OFFICE SYMBOL

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicabie)
AFOSR NM AFOSR-81-0116
8c. ADORESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.
o hognam PROJECT TASK WORK UNIT
Bolling AFB DC 20332 LEMENT NO. NO. /4‘°- No.
GO | 2304 /
11. TITLE (Include Security Classificetion)

APPROXIMATING MULTIPLE 270 INTEGRALS WITH "BAND LIMITED" FROCESSES

12. PERSONAL AUTHOR(S)
Harold J. Kushner and Hai Hus

13a TYPE OF REPORT 135, TIME COVERED
Technical EROM ___ T0

14. DATE OF REPORT (Yr., Mo., Dey)
OCT 83

16. PAGE COUNT

26

16. SUPPLEMENTARY NOTATION

17 COSATI CODES
FIELD ROUP

SUB. GA.

18. SUBJECT TEAMS (Continue on reverse if necessary and identify by block number)

19. ABSTRACT (Continue on reverse if necessary and identify dy dbiock number)

SEE REVERSE

20. CISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED [ same as rer. T pric usens [

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSITIED

225 NAME OF RESPONSIBLE INDIVIOVAL
Dr. Robert N. Buchal

DD FORM 1473, 83 APR

P aTa® a®a LN

T AN Y,

EDITION OF t JAN 73 18 OBSOLETE.

220 TELEPHONE NUMBER
{include Arva Code)

(100 767- 4939

22c OFFICE SYMBOL
Wi

UNC LU

A
Sramb

SECURITY CLaZb (CATION OF THIE PAGE

S0

~ S 7 LR AP RN v ,-“,- < .'N-‘.-.:.‘.‘
u‘ahl‘». o ". o "‘ .«. 1} -i. et o O .

AR



S rv\ii . ) E{clﬁ§§lﬂﬂ e
I R XSS -
A ] CLABBIPICATION OF T:1S PAGE
- o - [ b - -

= §  trEd #19, ABSTRACT:
Lot n®(+) denote a "wide-band width" vector valued process. The
. .
paper is concerned with limits of rrnt () L(t,s)ne(s) dtds, and for the
700

m-miltiple integral case. For the most important case, a weak convergence
result is obtained, and the "correction'" terms exhibited. The method is

such that the conditions used can readily be weakened. An application to

< mnggpear . e,

a likelihood functional and hypothesis testing problem is given. There,
the weak convergence r?sult (rather than mere convergence of finite dimen-
sional distributions) is essential if the limit approximation is to make t
sense as an approximation to the likelihood functional. The correction
terms depend only on the limit (as ¢ -+ 0) of the correlation function of

the (remormalized) ne(-) .

t

UHCLASSIFIED

SFOCURTY CLASSIFICATION OF THiS Pa

NS TN TR LA TTs T Lty Con: a T8 ey

CARELEERE AR

wA%



TR D V. BRI A T g W BN - 2

U!

.i-
- ‘,:.‘;'
P g
he &
3%
. o
APPROXIMATING MULTIPLE ITO INTEGRALS EY
WITH "BAND LIMITED" PROCESSES
by .
b

+ . ++

Harold J. Kushner and Hai Huang

Lefschetz Center for Dynamical Systems
Division of Applied Mathematics
Brown University
Providence, Rhode Island 02912

October 1983

AFOSK-Y/-01/ & o

3
* Supported by MF-AFOSR GrantBESWNE, NSF Grant #ECS 82-11476, and I
ONR Grant #N00014-76-C-0279-P6. &
on 1eave from the Department of Systems Science and Mathematics, . %?.‘;
Washington University, St. Louis, Missouri. Supported by AF-AFOSR e
- Grant # 81-0116 and NSF Grant #ECS 8105978.




Approximating Multiple fto Integrals
With "Band Limited" Processes
by
Harold J. Kushner and Hai Huang

4

) 7243 er '3 Csnccrnll' W;T)x ]:AL ,-a‘/}cm Ur
!’-“'P gp If‘a "I\fv r:..LS Woin Aa"J/ /“'m’f;“, rr“c,
I.J 1&&’6)“ 1;\ fl\& COAtC}"‘[J ‘f f}‘e_ i-}’ed’j 31

T}“' rablarmn 15 § j
C’—-—-—i/——'/ ABSTRACE R 7
weal Corwf*jtrco f messures s — 7T

Let ne(o) denote a "wide-band width" vector valued process. The
i

. t T
paper is concerned with limits of [ I n® (v)L{r,s)n%(s)drds, and for the
0’0

2pprox T

m-multiple integral case. For the most important case, a weak convergence - !

result is obtained, and the ’?c;rrection')t/erms exhibited. The method is
such that the conditions used can 1;eadi1y be weakened. An application to
a likelihood functional and hypothesis testing problem is given. There,
the weak convergence result (rather than mere convergence of finite dimen-
sional distributions) is essential if the limit approximation is to make
sense as an approximation to ‘the likelihood functional. The correction
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1. Introduction. We are concerned with the set of problems introduced

by Balakrishnan in [1]. Let the matrix valued kernel L(.,.) be such that

e T
[rjut,s)lzds dt <o foreach T <o, and L(t,s) =0 for s > t. For
0’0
) each fixed T, define the operator L on Lz[o,'r] by Lf(t) = r L(t,s) £(s)ds.
T 0
Then the adjoint operator L* is defined by L*f(t) = I L'(s,t)f(s)ds and
T t
(Li'+-L¥) £(t) = I (L(t,s) + L(s,t))£f(s)ds. Let (L+ L*) be nuclear [2] for
0
each T < w. Then [2] for each T < =, there are A;»M; K, such that 2|Xi|<
<o, [IMI] <1, [I5]] <1 (]| || is the L,[0,T] norm) and
(1.1a) L(t,s) + L(s,t) = gkiMi(t)Ki(s) »0<s,t <T.
3,{; Hence for T >t > s > 0,
(1.1b) L(t,s) = }AiMi(t)Ki(s). )
o .

: Without loss of generality, assume that all Mi’ Ki’ L are rxr matrices.
L 1f x“(-) is a sequence of random processes (with paths in some func-
tion space), we write Xn(-) » X(+) to denote weak convergence [3],[4] to

a process X(.). Let n®(.) denote a "wide-band" noise process such that

as €+ 0 the process defined by

t
(1.2) I n&(s)ds = NE(¢)
0

converges weakly to a standard Wiener process w(.). The problem is to find
. the weak limits of repeated integrals such as
t T e
¥ (1.3) xE(t) = [ dr I ds n®(1) 'L(x,s)n®(s).
oy 0 0

We also treat the case of m-repeated integrals.

s
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In [1], n(-) was Gaussian and it was obtained from a Wiener process
in a very particular way. Also, convergence (in the mean square sense) was
proved only for each fixed t. In this paper, the problem is treated in the
context of the theory of weak convergence of measures [3],[4]. Most of the .
results (including those for the important application of Section 5) are of

the weak convergence type. But some are a combintation of weak convergence

«,!‘

and convergence of finite dimensional distributions. A much broader class
of noise processes can be dealt with. This is important in applications,
since we should not have to require that the actual physical noise is the
particular smoothed functional of w(+) used in [1]. (In [1], the n° ()

was such that it's spectral density was 1 on some interval [-M_M_], and

zero outside, where Mo+ > as €~ 0.)

Owing to the nature of weak convergence, a broad class of path function-
als (including passage times, a particularly important case in applications)
of ;he gfocess xE () converges in distribution to the same functional of the
limit process. As in [1], we apﬁiy the result to the problem of approximating
a likelihood functional (Section S5). This problem demonstrates the importance
of the weak convergence (rather than convergence in distribution for each t ),
The weak convergence method is essential, if the results of the approximation
& are to be used for a sequential hypothesis test, and it is still important ev-
en if the test is to be conducted at a fixed time only. Further comments on

this and related points appear in Section 5.
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In the next section, the noise model is discussed, and some definitions
collected in Section 3. In Section 4, the weak convergence result is proved
first (for the double integral case) when the sum in (1.1b) is finite and the

. Hi’xi are continuous. Other results will follow from this. The likelihood
ratio problem appears in Section 5, and Section 6 outlines the method for the
multiple integral. The results here can also be applied to the non-linear
filtering problem dealt with by Ocone [S5], where the filter is represented as

a sum of multivariate Ito integrals, but where the observation noise is "wide-

band". It should be clear that the method is equally applicable to the case
,v: t .
where (1.3) is replaced by I drdes n;(r)'L(r,s)ni(s), and ng(.) is not
0 Jo :
the same as nf(-) (and also for the analogous m-multiple integral), but for

simplicity of notation, we stick to the simpler case.

e

The correction terms depend only on the correlation funtion of the y(-)

-

e

process introduced in Section 2, and thus are robust with respect to the un-
derlying noise model. Although, it will not be pursued, one can use our meth-
od to deal with cases where the kernel L(.,) depends on ne(-) also. Such

results are an additional édvantage of the weak convergence approach.

f 2. The Noise Model. Suppose that y(¢) is a zero mean stationary pro-
r cess and define ye(t) = y(t/ez). If y(+) has spectral density S(w), then
y€(.)/e has spectral density S(ezuﬂ. To obtain the n®(+) wused in [1], let
. y(*) be a (scalar valued) zero mean Gaussian process with spectral density

’ 1 on [-M,M] and zero elsewhere, and use ye(-)/e=ns(f). Note that R(T) =

= By(t)y(0) satisfies

R(x) = %'- [Melmdw = sin M1/ 71
M

i rR(T)dT= 1.
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The form y®(.)/¢ = n®(+) is a common and useful way of obtaining a
“wide-band" process. The method used here is not restricted to the use of
such a form. In order to simplify the use of published results, we proceed
as follows in the theorems. We let n®(.) = y®(.)/e¢, where y(<) is a .
right continuous (vector valued) process satisfying either (Al.a) or (Al.b)
below. After the proof of Theorem 1, we state two sets of more general con-
ditions under which the results hold. In general y(.) need not be station-
‘ary. One particular interesting case which fits the conditions described af-
ter Theorem 1 is (under appropriate assumptions on he(-) and the Poisson
jump process N_(-))

t
né(t) = L he('t-s)st(s).

Al. Either (a): y(.) is stationary, mean zero and Gaussian with a

rational spectral density fumction, or (b): it is stationary, bounded and

strongly ¢-mixing* [3] with mixing rate ¢(.) satisfying r&’(u)du < =, -
, o - 0
Under (Al.a), there is a stable matrix Al, matrices B1 and H1 and

a standard Wiener process wi(+). such that

(2.1) y=* HIYI’ where le = AlYldt + Bld"l'

We normalize such that Covar Y;(t) = I. Define R,(t) = EYl(t)Yi(O) (sta-

tionary value). Then Rl(t) + 0 exponentially and for s >t
(2.2a) B[y(s)|Y1(u), uc<t] = HIRI(s't)Yl(t)’

N We also use the property that if Eysees »§4 are zero mean and jointly Gaussian,

t y’e) is strongly ¢-mixing if there is a function ¢(s) which goes to zero
- 8+ » such that for each t and measurable set A depending only on
7(u),u < t, and measurable set B depending only on y(u),u > t+s, '
|P(BIAY - P(B)| < #(s). -

Bhetre sy Y i e W L . \ , .
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then
(2.20) BEE g, = BEjE,BE L, + BE 6 BEE, + BB BEC ..

Assume (Al.b), let T > 0, s> 0 and let y(t) be bounded by kl‘

Then [6]
|Ely(t+s)|y(w), u < t]] < 2k;6(s)
|Ey(tss)y* (tese)| < 2k50(7)
(2.3a)
E = |E[y(t+s)y'(t+s+1)|y(u),u < t] - Ey(t+s)y'(t+s+1)]
- < 4Jo(s)
and

E 5_4ki¢(r).
Hence E < 4k29%(s)¢™(x).

Let $; < Sy < Sz <5, and let yi(-) denote the scalar components of y(-).

Then the mixing (Al.b) and Eyi(s‘)Eyé(sz)yn(s3)yz(s4)=0=Eyi(sl)yj(sz)yn(ss)EyE(s
imply that . .
B = |Ey;(s)y;(s)y, (s )y, (s | < ko(s,-s5)

E1 5_k¢(52-sl)
Hence E1 5_k¢%(s4-53)¢%(sz-sl).
Here and in the sequel k denotes a constant whose value might change from
case to case. Both (2.2) and (2.3) will be useful for evaluating various in-
tegrals in the following theorems, and are generally used without specific

mention.

3. Some Definitions. We work with the space Dr[O,w) of Rf-valued

right continuous functions with left hand limits, and the Skorohod topology
[3],[4]. Let .5: and .5:3 denote, respectively, the minimal (completed) o-
algebras over which ({y(s),s <t} and {y%(s),s < t} are measurable, and
let Et and E: denote the corresponding conditional expectation operators.

Following Rishel [7] and Kurtz [8], define p-lim and A® as follows. We

"
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‘5: 6~
2%
) say p-lim £ =0 if for each T <, nfg%rﬁ|fn(t)|< » and Elfn(t)| + 0

for each t. f£f(+) is p-right continuous if p-lim[f(-+§) - f(.)] = 0. Let
S+0
f be progressively measurable with respect to the family {5{5, t < =}, Then

we say that fe PA°) and A°f =g if

& EC£(t+s) - £(t)
> p-lim 3

-g(t) =0

and g is p-right continuous. If f € (A€), then

ey T .
Ez (3.1) Me(t) = £(t) - £(0) - f A%£(s)ds

% 0
g c
i is an _9t-martingale [8].
E‘ 4. The Convergence Theorem for Double Integrals. In preparation for
3y
i the sequel, consider the case where L(t,s) = M(t)K(s), where M(:) = Ml(-)
B and K(°) = Kl(') are continuous. Define
2 t
1% . € €

S zl(t) = fl((s)n (s)ds
W (4.1 0

¢ € _fte e

: xl(t) = |n (t)'M(r)zl(t)dr.

0

i € _ € _%
,%% Then xl(t) = x (t). For L(t,s) -lMi(t)Ki(s), where Mi(-) and Ki(°) are
o continuous, define z°(¢) = (zle('-),.,...,z;(-))' and
ig € t €
W z.(t) = | K.(s)n"(s)ds,
. i o &
¥ (4.2)

! € te o € .
! x.(t) = [ n7 (1) M.(®)z;(z)dt , i <m.
n 1 0 1 1 _—

1 Then
Ky
4
3 4.9 x50 = ) £
-’ 1
* Limits of the above sequences are dealt with in Theorem 1. Define R = :
3

X
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= r R(u)du, where R(u) = Ey(u)y'(0) and Rz'_j==[Ey]._(s))"_i (0)ds. Let VE
denote the "positive" square root of the matrix R and note (for future
use) that R(u) = R'(-u).

Theorem 1. Assume (Al) and let L(t s) take the form ZM (t)l( (s), where

M, and K, are continuous. Then {zi(-), i<m, x5 )} = {x%(«)) is tight

in Dml[o,w) and converges weakly to the process {zi(-), i<m x(s)} =

= X(+), where for m =1 (m-it;ingi f;=z1,= MI=M1, -.K-'.Kl here)

dz 0+ K
(4.4) \/i dw,
+ .
dx izj Rij Lij (t,t)dt + \ z'™M'

where Ly (t,t) is the 15t component of L(t,t), and w(-) is a standard

Wiener process. For general m,

dz, K, (t)
(4.5a) . ] - VR aw

dz. K_(t)
(4.5b) dx = i?j R;jLij(t,t)dt + gzimi(t)\lf dw
Also
(4.50) [oy (s)ds/c »VR w(e).

The component (4.5b) equals

t [T '
(4.6)1' x(t) = r 2 RlJ 13(5 ,S)ds + [0 IO (ﬁdw(t))'L(r.SNﬁ_dw(s).

* Witk the noise model of [1], R 1J =6 /a, in which case the correction term
is > ZLii(t t)dt, which is cons1stent with the results in [1].
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Proof. Under the conditons on the noise, and the continuity of Ki and Mi’
the result follows by the perturbed test function method of [9],[10]}, and we
only show how to identify the terms of the limit operator and verify the as-

sunptionsvin [10]. Reference [10] uses "truncated" processes, but we ignore

this in what follows, since we are only interested in identifying the terms

and assumptions used in [10]. The method is simple here, since the equation

o .

2ﬁﬂ for the zg is not "feedback", and the equation for the x: does not de-
¥

1y - -

Ix pend on the {x;,j < m}, but only on zz(-) and y®(.). For simplicity,

until further notice, we do the special case where L(t,s) = M(t)K(s) (i.e.,
m = 1). Let the test function f£(-) have compact support and continuous
miked second partial derivatives. Then (write £(t) = £(x%(t),z%(t)) and

X = (x,2),X5(t) = 5(2),25(t))

ASE(r) = £;(XE()E5(D) + £, (X5(NE(D)

= £ OCOIKMDY(E) /e + £XE@)YS (DM () /e

B
é; Fix T. We define the test function perturbations as follows (see [10] for -
" more detail). Define £5(t) = £5(X°(t),t), where
Ly T
i £0x,6) = 2 [ dr £(X) K(DEHS()
(::E 1 € t Z t i
: e[ aer o By M =1 secx, e .
‘,.,, . I
e Then £5(.) €D(A®) and
" 1
" ASES(L) = -GOXE(L),t)/e +& T el GXE(t),1))dT
- 1 sV T ¢ ¢ dt o T ’
{ﬁ: Note that, by a change of variables s/e2 + s, we get
{ﬁ £ T/ez £ 2 2
£ (t) = ¢ dt £ (X)E_y'(t/e"IM(e"T)2.
1 t/e2 X t

which is 0(¢) in the mixing case and O(Iyl(t)le) in the Gaussian case.

230 b\

=5
-
-

Such- a transformation will be used frequently, without specific mention.
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"we have (with X& = Xx%(t))
s keffct) = -ASf(t)
y +-§ !: dr[£ (XOK(DEEy (1) ] 28(t)

(4.7) + % K de[£ (XE)BEYE (DIM(x) A 25(t)
.

€
1
€

[T dt[£} (X)K(DEEY(x) ] x°(t)
. .

[ etg 0oy MR 5.
t

The integral terms on the right of (4.7) are, respectively

T , .
3-[ dr ESyS (DK (£, (X)K(D)YE (x)
. e t 2z
T ' ' '
—:7 [ dt ES {y© (K" (£, (X)y® (IM(0)2F+ £,(XYy® (K (1IM' ()y ()}
. (4.8) t
T '
5 [ arte 00y 01 omw:®,
T ' '
:12' L dt[£  OOEYS (M) F® (IM(E)2°

Let FE(XSyS(t),t)/e?2 denote the sum of the terms in (4.8). Define the sec-

ond test function perturbation f£3(t) by £2(t) = f;(xe(t),t), where

. T

ya £E(xE,t) = -lz dt[ESFX ,yS(1).1) - E l"°'b(,)'€(t).t)| el
e 2 e Je F X=X
o Also, £5(t) €D(A®) and

- . ASES() = -HXE,yS(0),00/¢% + BFF(,yS(0) ) /el e

. + £(X5,y5 N, X5+ £(X5,yS(e)EC.
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Define the (time-dependent) diffusion operator A by

A£(X) = lim 2 EFE(X,y () ,¢) ]
€ ¢
T/e2 A
= lin f 45 By (¢/ DK (9%, 00K(e20y () -
e*0 /t/¢e2

+

1 (4.9) [}"(:tz)l('(t)fxz(x))"(r)M(ezt)z + y' (DK (20 £, (X)y' (t/e2)M(t) 2]

+

£,y (t/eAK' (M’ (e27)y ()

+

£ (X (' (DM(e27) 2) (¥ (t/ez) M(t) z)]- .

The limit of the "fz 2 component" on the right of (4.9) is trace R° (l('ful(-)/z.
The limit of the "f component” is f£.(X) J] L..(t,t)R;,. The limit of the
X X i,j ij 1]

"f ' and "f ,f " components are, respectively, fn(X)(z'M'iMz)/Z and

trace R- [K'£ ,(X)z'M'+Mzf} (x)K]/2. Note that (4.4) is the unique solution
X(*) to the martingale problem (of Stroockand Varadhan) for the (time depen-

dent) operator A. -

Now, we relate these results to those of [9],[10]. Define the perturbed
test function £°(t) = £°(t) + £(t) + £5(t). In order for X°(+) = X(+) in
‘f" Drﬂ[O,a) the results of [10] require that (4.10a)to (4.10d) hold for each

b test function f£(°) and each T < « and with x8(+) varying in an arbitrary

,[ bounded set.

(4.10a) p-lim £ = 0 , i = 1,2

' (4.10b) sup P{:nglff(t)l 2N} +0 as N~

; (4.10c) £, € AA%)

B (4.10d) p-1im[A°£S - Af] = 0 y

- [ - . -~ - . v
2 -, *'-"'b'h‘,"‘ "'*"( ). o )i."ul\ TR AN s LR b N W AN b IOE RN WO, W YW Y ("
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The method of [9],[10] requires (4.10a,b,c) for i =1 to get tight-
ness of {X%(.)} in D*Y[0,<). A1l the conditions in (4.10) are then used
to identify the operator A and to get X%(.) = X(.), the unique solution
to the martingale problem for operator A.

Under (Al.a), £5(t) = O(Ei)[|;f(t)[i+ 1] and [RE£S(t) - A£(xE(1)) | =
= 0(e)[|Ye(t)| '+ 1], and P{ su9 eIY (t)l > a>0} $0 for each a. Under
(Al b), these estimates hold without the Y (t) term. Thus (4 10) holds, and

the theorem is proved for m = 1. - e
--~- The general case {m > 1) follows from this - simply use the definitions
= (1(1, ..,k ), = (M,..M), 2% = (zl,...,zm) and replace K, M and z°

by ¥, 4 and A respectlvely. Q.E.D.

Weakening the assumptions (Al). Let yf(.),...,yi(-) be the zero mean

scalar components of the right continuous vector valued y%(+) and let nS(s) =

A}’?(_’)_/ €. Define

££,t) = f:ﬁiyfts) ds/e
(4.11) r
£5:;0 = f: dr Itlﬁiygts)yg(r) - Ey§(s)y§(m1ds/ €2,

Let sup E|y‘i=(t) |2 < ». Suppose that rEyie(s)yJ?(t)ds/ €2 is bounded
mifo:;:)"e;g t <T, € >0, and for each t<T f:onverges to a limit (not de-
pendingon Tort) as e+ 0.

It is apparent from (4.10) that (Al) can be weakened. To verify (4.10a,b)
in general, for the f£€ constructed in the theorem, we need only that (4.10a,b)

hold for each of the f££, and f£5,. of (4.11).The term ASf€ contains an x-

1i 2ij
gradient of fe(x t) (with x then set equal to X&(t)) times X®(t). Thus,
to geét (4.10d), we need that additionally p-lim [ 21j (t)yk(t)] 0 for all

i,j,k. Condition (4.10c) will also hold under these conditions. These condi-

tions are satisfied under (Al).




R T R O L BN N A T R T RIS IR P AN At e T T

=12~

The perturbed test function method was used in Theorem 1, since reference
can readily be made to it. In Chapter 5 of [11] an alternative method (called
there the "combined perturbed test function-direct averaging method") is de-

veloped. With use of that method for proving weak convergence, and for the

‘case yS(t) = y(t/e2), (Al) can be replaced by (4.12)

T
(4.12a) {ly(t) [2, suplf E‘:’g'(u)clul2 , t <o, T <=} uniformly integrable
A<] ‘t+A

T
(4.12b) I Ety(u)du continuous in probability, uniformly in t <T, for each T.
t

T
(4.12¢) I E y(u)y(s)'du converges as 1-S + =
s

(4.124) EIIT du[Ety(uoy'(s)-Ey(qu'(s)]| +0 as t1-S+w, s-tow,
s

These conditions (which are just (5.8.20) to (5.8.23) in [11]) are rather umnre-

sfrictive, as are the requirements associated with (4.11). In fact (4.12) is

implied by (Al). .

Theorem 2. Assume the model (4.2), (4.3) and contition (Al). The process

defined by one(u)du/e converges weakly to \j-?: w(+). Let Mi and Ki be

in LZ[O,T] for each T < », but not necessarily continuous. Then zi -z,

of (4.5) and the finite dimensional distributions of x%(+) converge to those

of (4.5). If the Mi(-) are bounded on each [0,T], then the weak convergence

of Theorem 1 continues to hold.

Proof. The first assertion is from Theorem 1. It is sufficient to work with
m =1, The value of the constant k (depending only on T) might change from

one usage to another. For notational simplicity, we consider only the scalar

and Gaussian case (which is slightly harder than the ¢-mixing case, since
y(+) 1is unbounded). In the ¢-mixing case, we simply replace (4.14) by in- -
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equalities derived from (2.3).
Part 1. We have
€ € 4 _ 1 [t*8 € €
(4.13)  E|z°(t+8)-2z7(t)| = - . dtldtzdtsdt4k(t1)...K(t4)Ey (tl)...y (t4).
;{‘ Define RE(t) = (JR(t/e2)| + [R(-t/e?)|) /€2, for |t| < @. Then
(4.14) [Ey€(t,)...y5(t) | < e*[RE(t,-t )RE(t,-t)
€ € € €
+ RE(t,-t )RE(t-t,) + RE(t,-t IRE(t,-t)].
+48
Define r |K(s) |R(z-5)ds = K (z). Then
t

"‘,-‘ +§ 2 '|'6 t+6 2
K(0)de = r df(j IK(s) |RE(z-5) ds)
t

t+8  (t+d 5 B

(4.15) < I dt([ K°(s)R®(1-s)ds) | R&(s)ds
B t : 0
< k(| R®(1)dv) r K“(s)ds.

0 t

The expression (4.13) is upper bounded by
t+d 2
k( [ KD [K_(x)d0)
t €
Then, by the Schwarz inequality and (4.15)

(4.16a) (4.13) 5_k([ K“(s)ds)".
t

But ([3 ], Theorem 12.3), (4.16a) implies that (z(.), €>0} is tight in

;ﬂ Cr[O,uo for each K. Also for each § >0 and T < =, (4.16a) implies that
(4.16b) sup P{sup|z(t)| > 6 >0} +0 as |[K|| » 0.

v >0 ti'l'

Part 2. Let us next evaluate E(xe(t))zz
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B(x¥(t))? = E[r dr y€(T)M(7) r ds yS(s)K(s)1%/e"
0 0
(4.17) ir:dsldszdssdsdu(sl)[|M(sz)||x(ss)||x(s4)| . -

«[R®(s,-5))R%(54-55)+ R(s5-5,)R"(5,-5,) +R"(54-5,)R"(55-5,) ] .

Let us evaluate the part of the integral on the right of (4.17) containing

R‘(ss-sl)ke(sz-s4) only. Write
t
Me() = [ () |RECe-s) s,
0

t t
Then I Mi(t)dr <k f I“(t)lzdr, and similarly for K(.). Using this, we
0 - - Jo

obtain that the term is bounded above by

y t t .
g [oue(ssﬂk(ss)]dss L) K_(s,) [M(s ) |ds,
(4.18)
2 2
< kMK

Via a similar analysis, we obtain that the other terms of (4.17) are also

-bounded by the right side of (4.18).

Part 3. Let &n be continuous for each n, and define. Gﬂn =M - Mn, ‘

where llcunll'l>,o. Define x° by x:(0)i0 and

n
*‘ (4.19) X = M zfy¢/e,
' (4.20) x& = Mzeye/e = ﬁ:zeye/e * Ganeye/e,

Using the tightness of {z%(+)}, an argument like that in Theorem 1 can be
used to obtain that {ze(-),x:(o), €>0} is tight in D“l[o,w) for each n

-;f and that the weak limit satisfies (4.4) with M replaced by ﬁn‘

i
A g S Tl L o p {
2 SO SL xh CRNR Rty 4‘“-'.‘ YR wE,
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Now, applying the estimate in Part 2 to the case where 6Mn replaces M, we

get

sup E( od-'nSM“(e%)zE(S)y’:(SJ/e)2

= sup Elxe(t)-x:(t)l2 +0 as n -+ o,
>0 l

e>0 !
The second assertion of the theorem follows from this and the above cited

weak convergences.

Part 4. Let Mi be bounded on [0,T]. Again, it is sufficient to work

with m = 1. Write M= M_ and define ﬁn,mn as in Part 3. Define XE(t) =

1
- rd .- t . e E - . -
$?gt) - xﬁ{t) = ‘;dsGMn(s)z (s)y (s)/e. To prove the last assertion of the

‘theorem, we need only prove for each T <« and § >0, that

(4.21) lim P{sup|§:(t)| >8§>01+0
° €0 t<T
as ||6Mn|| + 0, where we can assume that {ﬂn(.)} and M(.) have a common
finite upper bound. Since {z%(.)} is tight in D[0,«) by Part 1, by

probability wé can Suppose that there is an N < » such that suﬁlzé(i)l'< N.
~If (4.21) holds with this bound, where N is arbitrary, then it holds as stated.

Henceforth, we let * |z°(t)| be bounded by N and absorb N into the constants
k, whlere appropriate.

2

" 777A "perturbed Liapunov function" method wili be used. Define W(x) = x°.

Then i\‘w(ig(t)) = 2:?:(1:) ze(t)sMn(t)'ye(t)/e. Recall that R(t) = H;R,(t) and

" ”b > ."' 5 ."K\.‘ ."‘ .L, .' ! ¥

AU TN

PN i . . oy
S RV 38 A0, :
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define RS(.) as in Part 1. Define the perturbation Wi‘:’n(l.) and WET(.)

by (write R = :‘E:(t) and z = z5(t), where convenient) by WE'™(t) = W(X) +

+ W;' ’n(t) » where

€,Nn T ~ €
o LI f 2xz8M (s)E y“(s)ds/e
g t

Sl 1 T .
vt % ) S‘t €
P LszGMn(s)HlRl(-—z-e )Yl(t)ds.

T
Define ME(t) = f | (s) |RS(s-t)ds. Since &E(-) is bounded on ([0,T],
t

uniformly in € and n, we have (change variables s/ €2 + s, and recall that
we are assuming that ze(t) is bounded)
€ 21 €
WM (e) | <k e [X]smpces [YECR)

(4.22)
A 2
< ke|x|? + ke¥S(0) | v eMi(e)
Define F(x,z,s,t) = zizmn(s)ﬁgye(s)/e. Then (for almost all t) .
‘," ~ €N ~ T ~ 3
3 Aeﬂl' (t) = -2xz0M_(t)yS(t)/ec + f F_(X,z,s,t)ds x&(t) .
4 n t X n
+ rl-' (X,z,s,t)ds z5(t).
. t 2
xt'?‘;s
9} Thus (to obtain the second line, change variables s/e2 + s and use (Al))
:the 2
AWSN () = r dsoM, (s)Egy(s) [RK(t)yS(t) + z°&M ()yE(D)],
, t
\' C e €N € 12
{;){ (4.23) BJAWS ()| < k MECE) [K(t) [EE|R] + kaME(e) M (1) |
< k|m*=(t)|2 |K(t)|2 + kE|5&|2 + k 8ME(t) | oM (t) |
The expression Fe,n(_) in (4.24) is a martingale, with FS(0) = 0 (see
Section 3). )

(4.24) Pe’n(t) = We’n(t) - rR‘w"“(s)ds.
0
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Taking expectations in (4.24) and using the bounds (4.22), (4.23) and
rcu:(t)'lcu (t)|dt < ||&M ||2 yields (for t < T)
0 n n -

(4.25) E|$c:(t)| < kf E|X (s)l ds + k||6M ||2 + kf (GM‘(t)) K(t)dt + ek

Note that sup sup SMs(t) is bounded and that &M-() + zero function in
€0 t<T n
measure (uniformly in ¢ + 0) as n + ». This and (14.25) imply

T
(4.26)  TFm sup E|XE(e)| < 6 = k[||oM |]% + [ (oME () kP (t)ae] B 0.
e>0 t<T . 0

Since F ’n(o) is a martingale,

(4.27) P{suplFe'n(t)l >a>0}< ElFe’n(T)Ha.
t<T

We have for each b > 0

(4.28) TP{suplI ASWE*P(s)ds| > b > 0} < Ef |ASWE*P(s) |ds/b < ks /s
>0 t<T

T1im P{ sup_ely(t >b>0}=0.

The bound (4.22) and estimates (4.28) substituted into (4.27) yield (4.21).

Theorem 3. Assume (Al). For tﬁg;general form (1.1a) where m = », the fi-

nite dimensional distributions of x%(.) converge to those of (4.6), where

L(t,t) =) AM; (0K, (t) and I.ye(s)ds/e -di_‘w(-). Assume (Al.b), and let
0

the {Mi,Ki} be uniformly bounded on each finite time interval. Then (4.6)

is the weak limit of {x®(.)} in D[0,«).

Proof. Part 1. In view of Theorem 2, for the first assertion it is suffic-

ient ot show that for each t < «,

L] t T
(4.29) B Dy [y My (e[ Ky (yS(ds/et(? 0
n

Q.E.D.
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as n -+ o, uniformly in ¢ » 0. We only outline the (straightforward) calcu-

lation in the scalar-Gaussian case. In this case,
(4.29) < mx A, | [ ds,ds,ds ds4|Mi(sl)l(i(sz)Mj(ss)Kj(54)|
. [Re(sz-sl)RE(s4-ss) + Re(ss-sl)Re(sz-s4) + Re(s4-sl)R€(ss-52)].
The evaluation now proceeds as in Theorem 2, part 2, to yield the bound
©
(4.29) :Eni Mgl IM T TIMEL TR T LR

ot 2
< Gl I TR 1D >

. A - -3
Part 2. Note that ZIAixF(t)l < Yired + YInd Ix?(t)lz. Thus for the
—_— n i n i o i i
second assertion, in view of Theorems 1 and 2, it is sufficient to assume Aizp

and to show that for each T < and 6§ » 0

(4.39) sup P{sup X A Ix (t)l2 > & >0} %o,
€0 t<Tn .

To simplify the notation, let all the Ki’ Mi’ x;, z; be scalar valued. The
bounds on Ki, Mi will be absorbed into the k and 0(c) below. A per-
turbed Liapunov function argument of the type used in Theorem 2, Part 4, will
be employed. First we show

sup P{sup 2 AN lz (t)| >8>0} 80
(4.31) e>) t<T n

sup sup E 2 A |z (t)|2 3.
€>0 t<T n

Define V_(z) = 2 Az 12 and VE(®) = v (z5(v)). Then AVi(t) =
2 inzi(t)xi(t)y (t)/e. Define the perturbation &v® L(8) by .

svE (t) = -I 2 A z, (t)K (s)Ety (s)ds. .
t
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Define 0;(t) = VE(t) + &VE(t). Under (ALD) we have

. |6VE(t)] = 0(e) IZI W EAG]
. | < 0(e) § A [+ |5 (0] 2.
n
Re'\);(t) = Ezz-r; r21 )‘J.‘l(i(s)l(i(t:)ye (t)Eiye(s) ds

0(1) § A4
n

[P . -
;.'r% Also V;(t) - r Aevg(s)ds is a martingale. Now, following the procedures
3§‘ 0
:‘Ei in Theorem 2, Part 4, we obtain that for each & > 0
5“1’ E Z A 23(0)]° < k Iy
t<T n
(4.32)
sup P{sup Z As |z€(t)| >8> oy 2
€0 t<Tn
Ly Next, the procedure is repeated for W (x) = 2 As | £ . We have
N
"‘.’ - N (xe(t)) = 22 A xe(t)M (t)zf (t)y (t)/e. Defme the perturbatlon
Ry
€ 2 € € €
" W, (t) = r 2 %5 (t)Mi(s)xi(t)Ety (s)ds
5
& and set RS(t) = W (x°(t)) + SE(t). Now (AL.b) implies that
R .
e € €
i [w=(e)| = 0Ce) § 2y lzi ()} lyi()]
f“s‘ n
% ™
ko 2 2
% <00 § A llz5 ] + [x5()[7).
bt n
Pk
Y Analogously to the procedure of Theorem 2,
gié .
agae _ 2 £ € € 2 € €
B AW () =5 Eds LM SEYT () [z (1)) M, (1) + x5 (0)K; (5] ]y (%)
L v n
: ©
Y g 1> € 2 €
= AT () | < k 121 MICHOIMEREHOTIR
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S |
7' As for the above case for Vn(ze), these estimates and the martingale pro-

. t
g: perty of Wﬁ(t) - f Aewi(s)ds yield

o 0

%9

,’:' o0 e 2 -] 2 - )

b (4.33) sup E J A [x; ()7 <sup k E ] A ]z, ()] <k} Ay

t<T n t<T n n

ﬁ This and the above martingale property yield the derived estimate (4.30),

¥

P )

(L4 similarly to what was done in Theorem 2, Part 4. Q.E.D.

93

5. An Application to the Approiimation of a Likelihood Ratio.

’:

9 We work with the system

&5

!

» dx = Axdt + de1

I (5.1)

b dy = Hxdt + dw2

»

I

%; where wl(.) and wz(.) are standard and mutually independent Wiener pro-

P cesses. The x(.) and y(.) here are not the same as those in the pre- ’
L‘ vious sections. Let ﬁ(t) = E[i(t)[y(u), u E.t]' Then on each [0,T],(the .

iy 8
VY

likelihood functional) Radon-Nikodyn derivative of the measure of (5.1) to

that of (5.2) is the F(.) of (5.3)

-afz
§E dx = Ax dt + Cdw,
= (5.2)
e dy = dwz.
e
{f F(t) = exp £(t),
N (5.3) . , .
. £(t) = -%-f |Hx(z) | “dr + I dy ' (t)Hx(t)dr.
7 0 0
Ex)
) Also

‘ mﬂ

dk = AX dt + G(dy - Hx dt)

ETE;

(A - GH)x dt + Gdy,

1

|

{

' 1
(

I

w

1

R RARY, CRCO LT (AR CE ChO
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where G(.) is obtainable from the solution to the Riccati equation. We can write

R ~ t t
- (5.4) x(t) = #(t,0)x(0) + Io #(t,s)G(s)dy(s) = L) U(t)V(s)Hx(s)ds
N 0
. + I U(t)V(s)dwz(s)
) 0
D
+ 9(t,0)%(0),
where ¢(.,.) is the fundamental matrix of v = (A - GH)v, and U(-) and
; V(.) are continuous. The second integral of (5.3) equals
% t T
(5.5) J dt[Hx(t)]' H I U(T)V(s) [Hx(s)ds + dw,(s)]
0 0
{5' + f dWZ(T)' H I U(t)V(s)Hx(s)ds
23 0 0
X t T t -
e B[ U@VEI,E) + [ T i IV X(0)
. 0 0 0
i;? Consider the problem where "wide-band" noise ¢e(-)/e replaces the ideal
3 .
;?3 infinite band-width white observation noise &2(-), and where ¢€(-) = y(t/e?)
N and y(.) satisfies (Al), and ir independent of wl(-). Under (Al), fwe(s)ds/e
%3 ""2(')’ a Wiener process with covariance Rt. W.l.0.g., assume R=I, since the com-
‘Q; ponents of the observation noise in (5.1) are mutually independent. In the
- general case, simply replace all dw2 ble-!_' dwz. As in [1], an important
¢ Yo
fag approximation and limit problem arises, since we must use the '"physical"
)
: ; wide-band noise [we(s)/e]ds in lieu of the ideal dwz(s) in (5.5). Re-
g™
v place dwz(s) and dwz(r) by [we(s)/e]ds and [we(r)/s]dr, respectively,
& N
i, in (5.1)-(5.5). Let Xx%(.) denote the value of (5.4) obtained with this re-
ﬁ; . placement. Then both {x%(.)} and the first two integrals of (5.5) (with the
- y-replacement) are tight and converge weakly to (5.4) and those integrals.
"

b P " “a PO Y e . J 3
TR T T T T I TR T Y TR T NI I |
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Also, the limit wz(-) is independent of wl(-). The only problem is the
3rd integral of (5.5), which we rewrite (with the w‘ replacement) as
1 [t e’ l € €
(5.6) 3 I dr 4 ('r)HJ UGV(S)¥E(s)ds = uF(e).
0 0

Write dy®(t) = [HX®(t) + ¢(t)/e]dt and

2€ = W&/ , 25(0) = 0

(5.7)
A L] '
L%’ u® = ¢© HUZ®/e , u5(0) = 0
§< Theorem 1 can be immediately applied to yield that {ze(-) ,ue(-)} converges
23
,<  weakly to (z(.),u(.)), where
%g * fv

dz = dez, Rij = fo E¢i(s)wj (0)ds
(5.8)
=1 + ' .

. du = 3 ..2.(HU(t)V(t))iJ.Rijdt + 2'U H'dwz‘
“;! 1’J
; : In general, R;j need not be zero for i # j. In the special case where

the {q,i(-)} are mutually independent and R = I, we get R;j = Gi j/2 and
1 t t T
(5.9) u(t) = 'l I trace HU(s)V(s)ds + I dwz(-;)HU(T) [ V(s)dwz(s)
0 0 0
Define

£5(t) = -2’- rlﬂie(s”zds + r [Hx(s) +9=(s)/e]HX®(s)ds
0 0

1t v R; .ds -

FE(t) = exp £5(t).
By our results, the system {x(¢),%5(+),y%(.),F®(+)} converges weakly to the

system {x(.) pi( ),y(:),F(:)} as €0, .
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Remarks. Fe(-) is not a likelihood functional. But the simultaneous
weak convergence of the system and functional just cited implies that it can

TE;, be used in statistical tests (for small € >0); for example in a hypothesis

. test for testing whether H takes the value Ho or 0 (signal or no signal,

respectively). This is because for each a >0

P(FE(t) > a|H = H)} SP{F(t) > a|H = H}.

Then, the use of F%(-) yields an "approximation" to the test which we would
have under the assumption that iz(o) were the actual observation noise. The
weak convergence is important if the test is to be meaningful - the conver-
gence of finite dimensional distributions (as obtained in [1]) is not actually
enough, hecause it is essential that the "system" ie(.) approximate X(-)
also, for otherwise we do not have an appfoiimation to a likelihood functional
for a particular system;

- Owing to the nature of weak convergence, the distributions of the passage

times of F®(.) through any given level also converges. Thus, the results

can also be used for a sequential test. A weak convergence type of result

is essential for this. It could not be done if only finite dimensional dis-

tributions converged. We end by remarking again that the procedure works

Bt with many other types of noise processes.

25

i."‘ {,

Y

gé& 6. Approximation of Multiple Integrals (order > 2)
¥ .'?

=
.

ik In order to simplify what would otherwise be a very awkward notation,

let y(¢) and L(.) be scalar valued. We seek the (weak) limit of

t
» (6.1)  x5(t) = fo ds_ [:m dsm_l...ﬁzdslr.(sl,...,sm)ye(sl)...ye(sm) /<™,

R AN & o o o'y LI PN B A SAAIA Ve STERTL 5 e Te S e ¢
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| where y°(t) = y(t/e2). Retain (Al), although the condition can be consider-
ably weakened. Also the {:ye (si) can be replaced by Illyi(si) if the set
{yl(-),....ym(-)} satisfies (Al). Only an informal outline will be given.
We first let L(sl,...,sn) = lI.i I‘i(si)’ where each Li(') is continuous.

1
Define, recursively, xg(t)

e

1 and (xei(O) =0 for i> 0)

e

°€ € € € €
X, = Lly /e = leoy /e

ey Y

.e E €
(6.2) X, = Lxy /¢
'i °c .‘e €
A Then x;(-) = x° (+). Either the method of Theorem 1 or the (preferable "di-

rect averaging'') method mentioned after Theorem 1 can be used to obtain the

correct limit. .

Theorem 4. Under (Al), {iz(-), i<mle= (ki(-), i < m), where (R = rR(u)du,

and w(+) is a standard Wiener process)

Y ( ) f
{_; dx1 0 } ( l.1 W
by
*f dx2 RLlexodt/Z szl
(6.3) : = | + YR X dw
'_fy \ dx ‘ m‘mLm-lxm-Zdt/zJ \ mem-l,‘

S

Remark. The "correction term" is more complicated here. It can be
obtained directly by solving (6.3) for xm(-) . The correction term is the

sum of all the terms in xm(u) except for the m-dimensional ito integral

_mlz trs 82m -
R LJ '.“..Jo ?Li(si)dw(si).

0
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The proof is essentially the same as that of Theorem 1 and we only
make a few remarks.

To use the method of Theorem 1, choose a test function f(xl,.. .,xm)
who;e second partial derivatives are continuous and which has compact sup-

port. Then (write xi - xf(t) , where convenient)

- n n
€ .
A f(xllo-o’xn) = g fxi(xi’-o-px;)xie‘ = g fxi(xl,o- -,xm)Lixie-lye/e

" Analogousiyto the method of Theorem 1, define the perturbations £(t)
. € €
and £5(t) = £(X)s000,X7) + f*l:(t) by
£€ L Tse e &)L, (s)xE EEy€(s)ds
1(®) =< ti Xy Xyoee oo X)L USIX5_15e y

Then (analogously to the case in Theorem 1)

m (T
AS£€(x) = -i-)'_ N f . (x'i’,...,{)Li(s)x*i‘_laiye(s)ds i;
(6.4) 4,5=1't 7175

T o
+ -:—' Z f fx.(Xi.---,X:)Li(S)E:}'e(s)ds xi_l

T iml ‘t 1
which equals (change variables s/e2 + s and substitute for xf)
m (T/€2 . e .
I (x]seen x5 xf_lLi(ezs)Ety(s)ds[Lj (t)y (t) xj_l]

£
i,j=1 Jt7e2 *i%j

(6.5) m /€2 . . . ) : C e
.o e sX)L; (e25)E ds[L, ,(t)x; y (t)].
+i§2 E/ez fxi(xl. x Ly (e°S)E ¥ (s) s[L; _ ()% oy )]

To obtain the operator A of the limit process, take expectations in

(6.5) and let € * 0 to obtain (the time dependent operator).

1 -
(6.6) Af(xy,...x) =3 g,jz-xk e R S L B R

m
122 fxi(xl,...,xm)Li(t)Li_l(t)xi_z

+
Ny |

I s I R e |
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This is the operator of (6.3). The component with the fx yields the
i
"correction term".

Now, let
n m j j
6.7 L(S,5:0.,8) = I L:(s. ) s L (s ee3S_)
( ) 1 m jzl i=1 i Jll m

vwhere the Li(.) are continuous. The procedure is, again, an extension
of that of Theorem 1. Each integral (for j=1,...,n)

: t
xe.J (t) = f

S S, .
2 m
. dsm.[.“ dsn_l...fo LI(syseeensdye(s)) . ¥S(s ) /e

0
is "state variabilized" and treated separately, except that the limit
Wiener process w(.) does not depend on j here-since the y°(+) ‘don't

“depemd on - § - herei - THUS K5(t) % x(+) =, W J(t), where

j=1
j j
dxy 0 151
j i3 — j
d’f2 ) R LoL xodt/Z T 1.2';91 dw
3 33 i
dx. R Lan 15 m 2‘“'/2 Lmxm-l

and %-1 J(0) =0 for 1> o0.

Theorems 2 and 3 hold also, when

L(S seeessy) = Zx ’iﬁ"‘l sy

and illil < » and the {Li} are uniformly bounded in Lz[O,T]n for each

T < ». The extension of the last assertion of Theorem 2 requires boundedness -

of each Li(-) for i> 1.

"‘3 LT A . 2 A ,‘Q .-' 'l »’ i“ >y ~4.' .\-\'\.'\. . ¥ ‘ .,( M E
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